Enhancing siRNA efficacy in vivo with extended nucleic acid backbones

Enhancing siRNA efficacy in vivo with extended nucleic acid backbones

  • Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooke, S. T. et al. RNA targeted therapeutics. Cell Metab. 27, 714–739 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levin, A. A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med. 380, 57–70 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shen, X. & Corey, D. R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 46, 1584–1600 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Delivery of therapeutic small interfering RNA: the current patent-based landscape. Mol. Ther. Nucleic Acids 29, 150–161 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egli, M. & Manoharan, M. Re-engineering RNA molecules into therapeutic agents. Acc. Chem. Res. 52, 1036–1047 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biscans, A. et al. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res. 48, 7665–7680 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gökirmak, T. et al. Overcoming the challenges of tissue delivery for oligonucleotide therapeutics. Trends Pharmacol. Sci. 42, 588–604 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Schlegel, M. K. et al. From bench to bedside: improving the clinical safety of GalNAc–siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res. 50, 6656–6670 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukherjee, D. et al. Analysis of RNA exonucleolytic activities in cellular extracts. Methods Mol. Biol. 257, 193–212 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res. 45, 10969–10977 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc–siRNA conjugates. Mol. Ther. 26, 708–717 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res. 48, 11827–11844 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, H. et al. RNA interference using boranophosphate siRNAs: structure–activity relationship. Nucleic Acids Res. 32, 5991–6000 (2004).

    Article 

    Google Scholar
     

  • Allison, H. et al. High potency silencing by single-stranded boranophosphate siRNA. Nucleic Acids Res. 34, 2773–2781 (2006).

    Article 

    Google Scholar
     

  • Maede, B. et al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat. Biotechnol. 32, 1256–1261 (2014).

    Article 

    Google Scholar
     

  • Hardcastle, T. et al. A single amide linkage in the passenger strand suppresses its activity and enhances guide strand targeting of siRNAs. ACS Chem. Biol. 13, 533–536 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter, M. et al. Amide modifications in the seed region of the guide strand improve the on-target specificity of short interfering RNA. ACS Chem. Biol. 18, 7–11 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun. 9, 723 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuda, S. et al. The α-(l)-threofuranosyl nucleic acid modification improves stability, potency, safety, and Ago2 binding and mitigates off-target effects of small interfering RNAs. J. Am. Chem. Soc. 145, 19691–19706 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lima, W. F. et al. Single-stranded siRNAs activate RNAi in animals. Cell 150, 883–894 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmar, R. et al. 5′-(E)-Vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA–GalNAc conjugates. ChemBioChem 17, 985–989 (2015).

    Article 

    Google Scholar
     

  • Elkayam, E. et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5′-end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res. 45, 3528–3536 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haraszti, R. A. et al. 5′-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Res. 43, 2993–3011 (2015).


    Google Scholar
     

  • Yamada, K. et al. Structurally constrained phosphonate internucleotide linkage impacts oligonucleotide–enzyme interaction, and modulates siRNA activity and allele specificity. Nucleic Acids Res. 49, 12069–12088 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kupryushkin, M. S. et al. Phosphoryl guanidines: a new type of nucleic acid analogues. Acta Naturae 6, 116–118 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. Impact of stereopure chimeric backbone chemistries on the potency and durability of gene silencing by RNA interference. Nucleic Acids Res. 51, 4126–4147 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 24, 374–387 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schirle, N. T. et al. Structural analysis of human Argonaute-2 bound to a modified siRNA guide. J. Am. Chem. Soc. 138, 8694–8697 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Metabolite profiling of the antisense oligonucleotide eluforsen using liquid chromatography–mass spectrometry. Mol. Ther. Nucleic Acids. 17, 714–725 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Nonclinical pharmacokinetics and absorption, distribution, metabolism, and excretion of Givosiran, the first approved N-acetylgalactosamine-conjugated RNA interference therapeutic. Drug Metab. Dispos. 49, 572–580 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Moore, L. D. et al. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mikhailov, S. N. et al. Use of 5-deoxy-ribo-hexofuranose derivatives for the preparation of 5′-nucleotide phosphonates and homoribonucleosides. Collect. Czech. Chem. Commun. 54, 1055–1066 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Robins, M. J. et al. Biomimetic modeling of the decomposition of 2′-chloro-2′-deoxynucleotides by ribonucleotide reductases to give 3(2H)-furanones which can effect mechanism-based inactivation by Michael-type alkylation. J. Am. Chem. Soc. 118, 11317–11318 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Haly, B. et al. An extended phosphate linkage: synthesis, hybridization and modeling studies of modified oligonucleotides. Nucleosides Nucleotides 15, 1383–1395 (1996).

  • Khvorova, A., Roux, L. M. & Yamada, K. Modified oligonucleotides with increased stability. US Patent 2020025017-W (2020); https://portal.unifiedpatents.com/patents/patent/WO-2020198509-A3

  • Khvorova, A., Roux, L. M. & Yamada, K. Synthetic oligonucleotides having regions of block and cluster modifications. US Patent 20210395739A1 (2021); https://patents.google.com/patent/US20210395739A1/en

  • Khvorova, A., Roux, L. M. & Yamada, K. Synthesis of modified oligonucleotides with increased stability. US Patent 20220010309A1 (2022); https://patents.google.com/patent/US20220010309A1/en

  • Traube, F. R. et al. The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol. 14, 1099–1107 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, R. et al. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct. Target. Ther. 8, 310 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kachare, D. et al. Phospho-carboxylic anhydride of a homologated nucleoside leads to primer degradation in the presence of a polymerase. Bioorg. Med. Chem. 24, 2720–2723 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kel’in, A. V. et al. Structural basis of duplex thermodynamic stability and enhanced nuclease resistance of 5′-C-methyl pyrimidine-modified oligonucleotides. J. Org. Chem. 81, 2261–2279 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sinha, N. D. et al. β-Cyanoethyl N,N-dialkylamino/N-morpholinomonochloro phosphoramidites, new phosphitylating agents facilitating ease of deprotection and work-up of synthesized oligonucleotides. Tetrahedron Lett. 24, 5843–5846 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Clavé, G. et al. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem. Biol. 2, 94–150 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elkayam, E. et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5′ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res. 45, 3528–3536 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, J. B. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alterman, J. F. et al. Hydrophobically modified siRNAs silence Huntingtin mRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids 4, e266 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassler, M. R. et al. Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res. 46, 2185–2196 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salomon, W. E. et al. Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84–95 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakanishi, K. et al. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klum, S. M. et al. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J. 37, 75–88 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, Y. siRNA seed region is divided into two functionally different domains in RNA interference in response to 2′-OMe modifications. ACS Omega 7, 2398–2410 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shmushkovich, T. et al. Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs. Nucleic Acids Res. 46, 10905–10916 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu, Y. L. et al. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article 

    Google Scholar
     

  • Zheng, J. Single modification at position 14 of siRNA strand abolishes its gene-silencing activity by decreasing both RISC loading and target degradation. FASEB J. 27, 4017–4026 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2020).

    Article 

    Google Scholar
     

  • De, N. et al. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. Mol. Cell. 50, 344–355 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, P. et al. Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: altritol-nucleotide (ANA) containing GalNAc-siRNA conjugates: in vitro and in vivo RNAi activity and resistance to 5′-exonuclease. Nucleic Acids Res. 48, 4028–4040 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, J.-P. et al. Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res. 19, 747–750 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, S. M. et al. 2′-O-Methyl at 20-mer guide strand 3′ termini may negatively affect target silencing activity of fully chemically modified siRNA. Mol. Ther. Nucleic Acids. 21, 266–277 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choung, S. et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 342, 919–927 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biscans, A. et al. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res. 47, 1082–1096 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roehl, I., Schuster, M. & Seiffert, S. Oligonucleotide detection method. US Patent 20110201006-A1 (2011); https://portal.unifiedpatents.com/patents/patent/US-20110201006-A1

  • Alterman, J. F. et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37, 884–894 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slow, E. J. et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12, 1555–1567 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orans, J. et al. Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family. Cell 145, 212–223 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jinek, M. et al. Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol. Cell 41, 600–608 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brautigam, C. A. et al. Structural principles for the inhibition of the 3′–5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J. Mol. Biol. 277, 363–377 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Springer, A. D. & Dowdy, S. F. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 28, 109–118 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laursen, M. B. et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol. Biosyst. 6, 862–870 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aiba, Y. et al. Allele-selective inhibition of expression of huntingtin and ataxin-3 by RNA duplexes containing unlocked nucleic acid substitutions. Biochemistry 52, 9329–9338 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolgin, E. tRNA therapeutics burst onto startup scene. Nat. Biotechnol. 40, 283–286 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrangou, R. & Doudna, J. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patutina, O. A. et al. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc. Natl Acad. Sci. USA 117, 32370–32379 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikan, M. et al. Synthesis and evaluation of parenchymal retention and efficacy of a metabolically stable O-phosphocholine-N-docosahexaenoyl-l-serine siRNA conjugate in mouse brain. Bioconjug. Chem. 28, 1758–1756 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westmanu, E. et al. Removal of t-butyldimethylsilyl protection in RNA-synthesis. Triethylamine trihydrofluoride (TEA, 3HF) is a more reliable alternative to tetrabutylammonium fluoride (TBAF). Nucleic Acids Res. 22, 2430–2431 (1994).

    Article 

    Google Scholar
     

  • Godinho, B. M. D. C. et al. Pharmacokinetic profiling of conjugated therapeutic oligonucleotides: a high-throughput method based upon serial blood microsampling coupled to peptide nucleic acid hybridization assay. Nucleic Acid Ther. 6, 323–334 (2017).

    Article 

    Google Scholar
     

  • Coles, A. H. et al. A high-throughput method for direct detection of therapeutic oligonucleotide-induced gene silencing in vivo. Nucleic Acid Ther. 26, 86–92 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, S. X. et al. Improved pharmacokinetic and bioavailability support of drug discovery using serial blood sampling in mice. J. Pharm. Sci. 98, 1877–1884 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conroy, F. et al. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington’s disease models. Nat. Commun. 13, 5802 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

  • Brooks, M. E. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar
     


  • Source link

    Leave a Comment

    Your email address will not be published. Required fields are marked *