Continuous multiplexed phage genome editing using recombitrons

Continuous multiplexed phage genome editing using recombitrons

  • Żaczek, M., Weber-Dąbrowska, B., Międzybrodzki, R., Łusiak-Szelachowska, M. & Górski, A. Phage therapy in Poland—a centennial journey to the first ethically approved treatment facility in Europe. Front. Microbiol. 11, 1056 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antimicrobial Resistance CollaboratorsGlobal burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Article 

    Google Scholar
     

  • O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. In The Review on Antimicrobial Resistance. (Government of the United Kingdom, 2016).

  • Chan, B. K., Stanley, G., Modak, M., Koff, J. L. & Turner, P. E. Bacteriophage therapy for infections in CF. Pediatr. Pulmonol. 56, S4–S9 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gencay, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 42, 265–274 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahler, M., Costa, A. R., van Beljouw, S. P. B., Fineran, P. C. & Brouns, S. J. J.Approaches for bacteriophage genome engineering. Trends Biotechnol. 41, 669–685 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiro, R., Shitrit, D. & Qimron, U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR–Cas system. RNA Biol. 11, 42–44 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Box, A. M., McGuffie, M. J., O’Hara, B. J. & Seed, K. D. Functional analysis of bacteriophage immunity through a type I-E CRISPR–Cas system in Vibrio cholerae and its application in bacteriophage genome engineering. J. Bacteriol. 198, 578–590 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bari, S. M. N., Walker, F. C., Cater, K., Aslan, B. & Hatoum-Aslan, A. Strategies for editing virulent staphylococcal phages using CRISPR–Cas10. ACS Synth. Biol. 6, 2316–2325 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez-Chamorro, L., Boulanger, P. & Rossier, O. Strategies for bacteriophage T5 mutagenesis: expanding the toolbox for phage genome engineering. Front. Microbiol. 12, 667332 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adler, B. A. et al. Broad-spectrum CRISPR–Cas13a enables efficient phage genome editing. Nat. Microbiol. 7, 1967–1979 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strotskaya, A. et al. The action of Escherichia coli CRISPR–Cas system on lytic bacteriophages with different lifestyles and development strategies. Nucleic Acids Res. 45, 1946–1957 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nozaki, S. Rapid and accurate assembly of large DNA assisted by in vitro packaging of bacteriophage. ACS Synth. Biol. 11, 4113–4122 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emslander, Q. et al. Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem. Biol. 29, 1434–1445 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, e2018181118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, A. J., Morrow, B. R. & Ellington, A. D. Retroelement-based genome editing and evolution. ACS Synth. Biol. 7, 2600–2611 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez, S. C., Crawford, K. D., Lear, S. K., Bhattarai-Kline, S. & Shipman, S. L. Precise genome editing across kingdoms of life using retron-derived DNA. Nat. Chem. Biol. 18, 199–206 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature 609, 144–150 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palka, C., Fishman, C. B., Bhattarai-Kline, S., Myers, S. A. & Shipman, S. L. Retron reverse transcriptase termination and phage defense are dependent on host RNase H1. Nucleic Acids Res. 50, 3490–3504 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosberg, J. A., Lajoie, M. J. & Church, G. M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyerges, Á. et al. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc. Natl Acad. Sci. USA 113, 2502–2507 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyerges, Á. et al. Conditional DNA repair mutants enable highly precise genome engineering. Nucleic Acids Res. 42, e62 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattarai-Kline, S. et al. Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217–225 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aronshtam, A. & Marinus, M. G. Dominant negative mutator mutations in the mutL gene of Escherichia coli. Nucleic Acids Res. 24, 2498–2504 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, H. M., Yu, D., DiTizio, T. & Court, D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl Acad. Sci. USA 98, 6742–6746 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weigele, P. & Raleigh, E. A. Biosynthesis and function of modified bases in bacteria and their viruses. Chem. Rev. 116, 12655–12687 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bryson, A. L. et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPR–Cas9. mBio 6, e00648 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleischman, R. A., Cambell, J. L. & Richardson, C. C. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine. J. Biol. Chem. 251, 1561–1570 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weigel, C. & Seitz, H. Bacteriophage replication modules. FEMS Microbiol. Rev. 30, 321–381 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolfson, J., Dressler, D. & Magazin, M. Bacteriophage T7 DNA replication: a linear replicating intermediate (gradient centrifugation–electron microscopy–E. coli–DNA partial denaturation). Proc. Natl Acad. Sci. USA 69, 499–504 (1972).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourguignon, G. J., Sweeney, T. K. & Delius, H. Multiple origins and circular structures in replicating T5 bacteriophage DNA. J. Virol. 18, 245–259 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hochschild, A. & Lewis, M. The bacteriophage lambda CI protein finds an asymmetric solution. Curr. Opin. Struct. Biol. 19, 79–86 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tal, A., Arbel-Goren, R., Costantino, N., Court, D. L. & Stavans, J. Location of the unique integration site on an Escherichia coli chromosome by bacteriophage lambda DNA in vivo. Proc. Natl Acad. Sci. USA 111, 7308–7312 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filsinger, G. T. et al. Characterizing the portability of phage-encoded homologous recombination proteins. Nat. Chem. Biol. 17, 394–402 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez, A. J. & Richardson, C. C. Gp2.5, the multifunctional bacteriophage T7 single-stranded DNA binding protein. Semin. Cell Dev. Biol. 86, 92–101 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werten, S. Identification of the ssDNA-binding protein of bacteriophage T5: implications for T5 replication. Bacteriophage 3, e27304 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marinelli, L. J. et al. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS ONE 3, e3957 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosberg, J. A., Gregg, C. J., Lajoie, M. J., Wang, H. H. & Church, G. M. Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PLoS ONE 7, e44638 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huss, P., Meger, A., Leander, M., Nishikawa, K. & Raman, S.Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning. eLife 10, e63775 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parson, K. A. & Snustad, D. P. Host DNA degradation after infection of Escherichia coli with bacteriophage T4: dependence of the alternate pathway of degradation which occurs in the absence of both T4 endonuclease II and nuclear disruption on T4 endonuclease IV. J. Virol. 15, 221–224 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warner, H. R., Drong, R. F. & Berget, S. M. Early events after infection of Escherichia coli by bacteriophage T5. Induction of a 5′-nucleotidase activity and excretion of free bases. J. Virol. 15, 273–280 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunne, M. et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep. 29, 1336–1350 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yehl, K. et al. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 179, 459–469 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, H., Kim, H. J. & Lee, S. J.Complete genome sequence of Escherichia coli strain BL21. Genome Announc. 3, e00134-15 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortier, L. C. & Moineau, S. Phage production and maintenance of stocks, including expected stock lifetimes. Methods Mol. Biol. 501, 203–219 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501, 69–76 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajagopala, S. V., Casjens, S. & Uetz, P. The protein interaction map of bacteriophage lambda. BMC Microbiol. 11, 213 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epp, C., Pearson, M. L. & Enquist, L. Downstream regulation of int gene expression by the b2 region in phage lambda. Gene 13, 327–337 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol. Biol. 501, 81–85 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    Leave A Comment

    Your email address will not be published. Required fields are marked *