Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).
Article
CAS
PubMed
Google Scholar
Medvedeva, Y. A. et al. EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database 2015, bav067 (2015).
Article
PubMed
PubMed Central
Google Scholar
Göös, H. et al. Human transcription factor protein interaction networks. Nat. Commun. 13, 766 (2022).
Article
PubMed
PubMed Central
Google Scholar
Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities. Nat. Commun. 9, 5416 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Soto, L. F. et al. Compendium of human transcription factor effector domains. Mol. Cell 82, 514–526 (2021).
Article
PubMed
PubMed Central
Google Scholar
Beerli, R. R., Segal, D. J., Dreier, B. & Barbas, C. F. 3rd Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl Acad. Sci. USA 95, 14628–14633 (1998).
Article
CAS
PubMed
PubMed Central
Google Scholar
Joung, J. et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548, 343–346 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rivera, V. M. et al. A humanized system for pharmacologic control of gene expression. Nat. Med. 2, 1028–1032 (1996).
Article
CAS
PubMed
Google Scholar
Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Segal, D. J. et al. Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor. J. Biol. Chem. 279, 14509–14519 (2004).
Article
CAS
PubMed
Google Scholar
Bailus, B. J. et al. Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an Angelman syndrome mouse brain. Mol. Ther. 24, 548–555 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR–Cas9 repressors. Nat. Commun. 9, 1674 (2018).
Article
PubMed
PubMed Central
Google Scholar
O’Geen, H. et al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901–9916 (2017).
Article
PubMed
PubMed Central
Google Scholar
Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hathaway, N. A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ying, Y. et al. The Krüppel-associated box repressor domain induces reversible and irreversible regulation of endogenous mouse genes by mediating different chromatin states. Nucleic Acids Res. 43, 1549–1561 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Geen, H., Tomkova, M., Combs, J. A., Tilley, E. K. & Segal, D. J. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res. 50, 3239–3253 (2022).
Article
PubMed
PubMed Central
Google Scholar
Cano-Rodriguez, D. et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong, C. K. Y. & Cohen, B. A. Genomic environments scale the activities of diverse core promoters. Genome Res. 32, 85–96 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahu, B. et al. Sequence determinants of human gene regulatory elements. Nat. Genet. 54, 283–294 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Geen, H. et al. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 12, 26 (2019).
Article
PubMed
PubMed Central
Google Scholar
Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).
Article
PubMed
PubMed Central
Google Scholar
Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nat. Methods 12, 401–403 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cano-Rodriguez, D. & Rots, M. G. Epigenetic editing: on the verge of reprogramming gene expression at will. Curr. Genet. Med. Rep. 4, 170–179 (2016).
Article
PubMed
PubMed Central
Google Scholar
Sanborn, A. L. et al. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. eLife 10, e68068 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnold, C. D. et al. A high‐throughput method to identify trans‐activation domains within transcription factor sequences. EMBO J. 37, e98896 (2018).
Article
PubMed
PubMed Central
Google Scholar
Tycko, J. et al. High-throughput discovery and characterization of human transcriptional effectors. Cell 183, 2020–2035 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Alerasool, N., Leng, H., Lin, Z.-Y., Gingras, A.-C. & Taipale, M. Identification and functional characterization of transcriptional activators in human cells. Mol. Cell 82, 677–695 (2022).
Article
CAS
PubMed
Google Scholar
DelRosso, N. et al. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 616, 365–372 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi, S. H. et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Res. 44, 5161–5173 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Alfert, A., Moreno, N. & Kerl, K. The BAF complex in development and disease. Epigenetics Chromatin 12, 19 (2019).
Article
PubMed
PubMed Central
Google Scholar
Treich, I., Cairns, B. R., de los Santos, T., Brewster, E. & Carlson, M. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2. Mol. Cell. Biol. 15, 4240–4248 (1995).
Article
CAS
PubMed
PubMed Central
Google Scholar
Childs, K. S. & Goodbourn, S. Identification of novel co‐repressor molecules for interferon regulatory factor‐2. Nucleic Acids Res. 31, 3016–3026 (2003).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gnanapragasam, M. N. et al. p66α-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2–NuRD complex. Proc. Natl Acad. Sci. USA 108, 7487–7492 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson, A. K. et al. The growth-suppressive function of the polycomb group protein polyhomeotic is mediated by polymerization of its sterile α motif (SAM) domain. J. Biol. Chem. 287, 8702–8713 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, K., Ou, X.-M., Chen, G., Choi, S. H. & Shih, J. C. R1, a novel repressor of the human monoamine oxidase A. J. Biol. Chem. 280, 11552–11559 (2005).
Article
CAS
PubMed
Google Scholar
McIsaac, R. S., Petti, A. A., Bussemaker, H. J. & Botstein, D. Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway. Mol. Biol. Cell 23, 2993–3007 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ledent, V., Paquet, O. & Vervoort, M. Phylogenetic analysis of the human basic helix–loop–helix proteins. Genome Biol. 3, RESEARCH0030 (2002).
Article
PubMed
PubMed Central
Google Scholar
Atchley, W. R. & Fitch, W. M. A natural classification of the basic helix–loop–helix class of transcription factors. Proc. Natl Acad. Sci. USA 94, 5172–5176 (1997).
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres-Machorro, A. L. Homodimeric and heterodimeric interactions among vertebrate basic helix–loop–helix transcription factors. Int. J. Mol. Sci. 22, 12855 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tycko, J. et al. Mitigation of off-target toxicity in CRISPR–Cas9 screens for essential non-coding elements. Nat. Commun. 10, 4063 (2019).
Article
PubMed
PubMed Central
Google Scholar
Russo, A. A., Jeffrey, P. D., Patten, A. K., Massagué, J. & Pavletich, N. P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A–Cdk2 complex. Nature 382, 325–331 (1996).
Article
CAS
PubMed
Google Scholar
Kubota, H. Quality control against misfolded proteins in the cytosol: a network for cell survival. J. Biochem. 146, 609–616 (2009).
Article
CAS
PubMed
Google Scholar
Thakore, P. I. et al. Highly specific epigenome editing by CRISPR–Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Alerasool, N., Segal, D., Lee, H. & Taipale, M. An efficient KRAB domain for CRISPRi applications in human cells. Nat. Methods 17, 1093–1096 (2020).
Article
CAS
PubMed
Google Scholar
Replogle, J. M. et al. Mapping information-rich genotype–phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tak, Y. E. et al. Inducible and multiplex gene regulation using CRISPR–Cpf1-based transcription factors. Nat. Methods 14, 1163–1166 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Replogle, J. M. et al. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. eLife 11, e81856 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Karlsson, E. et al. Disordered regions flanking the binding interface modulate affinity between CBP and NCOA. J. Mol. Biol. 434, 167643 (2022).
Article
CAS
PubMed
Google Scholar
Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).
Article
CAS
PubMed
Google Scholar
Wang, F. et al. Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc. Natl Acad. Sci. USA 109, 6078–6083 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Percharde, M. et al. Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming. Genes Dev. 26, 2286–2298 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Eijkelenboom, A. et al. Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol. Syst. Biol. 9, 638 (2013).
Article
PubMed
PubMed Central
Google Scholar
Eijkelenboom, A., Mokry, M., Smits, L. M., Nieuwenhuis, E. E. & Burgering, B. M. T. FOXO3 selectively amplifies enhancer activity to establish target gene regulation. Cell Rep. 5, 1664–1678 (2013).
Article
CAS
PubMed
Google Scholar
Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).
Article
CAS
PubMed
Google Scholar
Zhou, H. et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nat. Neurosci. 21, 440–446 (2018).
Article
CAS
PubMed
Google Scholar
Dominguez, A. A. et al. CRISPR-mediated synergistic epigenetic and transcriptional control. CRISPR J. 5, 264–275 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Counsell, J. R. et al. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci. Rep. 7, 44775 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ptashne, M. & Gann, A. A. F. Activators and targets. Nature 346, 329–331 (1990).
Article
CAS
PubMed
Google Scholar
Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).
Article
CAS
PubMed
Google Scholar
Jones, R. D. et al. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat. Commun. 11, 5690 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, K. et al. Systematic comparison of CRISPR-based transcriptional activators uncovers gene-regulatory features of enhancer–promoter interactions. Nucleic Acids Res. 50, 7842–7855 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahata, B. et al. Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control. Nat. Methods 20, 1716–1728 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo, L. Y. et al. Multiplexed genome regulation in vivo with hyper-efficient Cas12a. Nat. Cell Biol. 24, 590–600 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu, X. et al. Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345 (2021).
Article
CAS
PubMed
Google Scholar
Bhatt, B., García-Díaz, P. & Foight, G. W. Synthetic transcription factor engineering for cell and gene therapy. Trends Biotechnol. 42, 449–463 (2023).
Article
PubMed
Google Scholar
Pomerantz, J. L., Sharp, P. A. & Pabo, C. O. Structure-based design of transcription factors. Science 267, 93–96 (1995).
Article
CAS
PubMed
Google Scholar
Rivera, V. M. et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood 105, 1424–1430 (2005).
Article
CAS
PubMed
Google Scholar
Suzumura, K. et al. Adeno-associated virus vector-mediated production of hepatocyte growth factor attenuates liver fibrosis in mice. Hepatol. Int. 2, 80–88 (2008).
Article
PubMed
Google Scholar
Schievenbusch, S. et al. Combined paracrine and endocrine AAV9 mediated expression of hepatocyte growth factor for the treatment of renal fibrosis. Mol. Ther. 18, 1302–1309 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee, S. H. et al. Intrathecal delivery of recombinant AAV1 encoding hepatocyte growth factor improves motor functions and protects neuromuscular system in the nerve crush and SOD1-G93A transgenic mouse models. Acta Neuropathol. Commun. 7, 96 (2019).
Article
PubMed
Google Scholar
Matsuda, E., Obama, Y. & Kosai, K.-I. Safe and low-dose but therapeutically effective adenovirus-mediated hepatocyte growth factor gene therapy for type 1 diabetes in mice. Life Sci. 268, 119014 (2021).
Article
CAS
PubMed
Google Scholar
Morishita, R. et al. Combined analysis of clinical data on HGF gene therapy to treat critical limb ischemia in Japan. Curr. Gene Ther. 20, 25–35 (2020).
CAS
PubMed
Google Scholar
Li, H.-S. et al. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 378, 1227–1234 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia, Y. et al. Next-generation CRISPR/Cas9 transcriptional activation in Drosophila using flySAM. Proc. Natl Acad. Sci. USA 115, 4719–4724 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ewen-Campen, B. et al. Optimized strategy for in vivo Cas9-activation in Drosophila. Proc. Natl Acad. Sci. USA 114, 9409–9414 (2017).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamagata, T. et al. CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol. Dis. 141, 104954 (2020).
Article
CAS
PubMed
Google Scholar
Magnusson, J. P., Rios, A. R., Wu, L. & Qi, L. S. Enhanced Cas12a multi-gene regulation using a CRISPR array separator. eLife 10, e66406 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffith, A. L. et al. Optimization of Cas12a for multiplexed genome-scale transcriptional activation. Cell Genom. 3, 100387 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsiung, C. C.-S. et al. Engineered CRISPR–Cas12a for higher-order combinatorial chromatin perturbations. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02224-0 (2024).
Vora, S. et al. Rational design of a compact CRISPR–Cas9 activator for AAV-mediated delivery. Preprint at bioRxiv https://doi.org/10.1101/298620 (2018).
Ma, D., Peng, S., Huang, W., Cai, Z. & Xie, Z. Rational design of mini-Cas9 for transcriptional activation. ACS Synth. Biol. 7, 978–985 (2018).
Article
CAS
PubMed
Google Scholar
Omachi, K. & Miner, J. H. Comparative analysis of dCas9–VP64 variants and multiplexed guide RNAs mediating CRISPR activation. PLoS ONE 17, e0270008 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukund, A. X. et al. High-throughput functional characterization of combinations of transcriptional activators and repressors. Cell Syst. 14, 746–763 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ludwig, C. H. et al. High-throughput discovery and characterization of viral transcriptional effectors in human cells. Cell Syst. 14, 482–500 (2023).
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobs, J., Pagani, M., Wenzl, C. & Stark, A. Widespread regulatory specificities between transcriptional corepressors and enhancers in Drosophila. Science 381, 198–204 (2022).
Article
Google Scholar
Policarpi, C., Munafò, M., Tsagkris, S., Carlini, V. & Hackett, J. A. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat. Genet. 56, 1168–1180 (2022).
Article
Google Scholar
Bedford, M. T., Chan, D. C. & Leder, P. FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands. EMBO J. 16, 2376–2383 (1997).
Article
CAS
PubMed
PubMed Central
Google Scholar
Macias, M. J., Wiesner, S. & Sudol, M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 513, 30–37 (2002).
Article
CAS
PubMed
Google Scholar
Gerber, H. P. et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811 (1994).
Article
CAS
PubMed
Google Scholar
Akhtar, W. et al. Using TRIP for genome-wide position effect analysis in cultured cells. Nat. Protoc. 9, 1255–1281 (2014).
Article
CAS
PubMed
Google Scholar
Li, X. et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Cell 187, 2411–2427 (2024).
Article
CAS
PubMed
Google Scholar
Velimirovic, M. et al. Peptide fusion improves prime editing efficiency. Nat. Commun. 13, 3512 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Haberle, V. et al. Transcriptional cofactors display specificity for distinct types of core promoters. Nature 570, 122–126 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanjana, N. E. et al. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171–192 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).
Article
Google Scholar
Bakan, A., Meireles, L. M. & Bahar, I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27, 1575–1577 (2011).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zulkower, V. & Rosser, S. DNA Chisel, a versatile sequence optimizer. Bioinformatics 36, 4508–4509 (2020).
Article
CAS
PubMed
Google Scholar
Roney, I. J., Rudner, A. D., Couture, J.-F. & Kærn, M. Improvement of the reverse tetracycline transactivator by single amino acid substitutions that reduce leaky target gene expression to undetectable levels. Sci Rep. 6, 27697 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tycko, J. HT-recruit-analyze. GitHub github.com/bintulab/HT-recruit-Analyze (2020).
Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).
Article
Google Scholar
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tycko J., et al. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Datasets. NCBI Sequence Read Archive https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1160796 (2024).
Tycko J., et al. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Datasets. Zenodo https://doi.org/10.5281/zenodo.13756269 (2024).
Morgens, D. W., Deans, R. M., Li, A. & Bassik, M. C. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34, 634–636 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Leers, J., Treuter, E. & Gustafsson, J. A. Mechanistic principles in NR box-dependent interaction between nuclear hormone receptors and the coactivator TIF2. Mol. Cell. Biol. 18, 6001–6013 (1998).
Article
CAS
PubMed
PubMed Central
Google Scholar
UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).
Article
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
Article
CAS
PubMed
Google Scholar
Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5, e19760 (2016).
Article
PubMed
PubMed Central
Google Scholar
Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar