Bacteriophage λ exonuclease and a 5′-phosphorylated DNA guide allow PAM-independent targeting of double-stranded nucleic acids

Bacteriophage λ exonuclease and a 5′-phosphorylated DNA guide allow PAM-independent targeting of double-stranded nucleic acids

  • Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y. et al. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat. Neurosci. 21, 447–454 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577–582 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. H. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, W. L., Shi, X. H., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870–11875 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Z. et al. PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosens. Bioelectron. 204, 114076 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitsis, P. G. & Kwagh, J. G. Characterization of the interaction of lambda exonuclease with the ends of DNA. Nucleic Acids Res. 27, 3057–3063 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J., McCabe, K. A. & Bell, C. E. Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proc. Natl Acad. Sci. USA 108, 11872–11877 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, X. et al. A structure–activity analysis for probing the mechanism of processive double-stranded DNA digestion by λ exonuclease trimers. Biochemistry 54, 6139–6148 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, J. et al. dsDNA/ssDNA-switchable isothermal colorimetric biosensor based on a universal primer and λ exonuclease. Sens. Actuators B Chem. 323, 128674 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L., Lei, J., Gao, F. & Ju, H. A DNA machine for sensitive and homogeneous DNA detection via λ exonuclease assisted amplification. Talanta 115, 819–822 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Digestion of dynamic substrate by exonuclease reveals high single-mismatch selectivity. Anal. Chem. 90, 13655–13662 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hohlbein, J., Craggs, T. D. & Cordes, T. Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 43, 1156–1171 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sustarsic, M. & Kapanidis, A. N. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 34, 52–59 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, T. et al. Noncanonical substrate preference of λ exonuclease for 5′-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction. Nucleic Acids Res. 46, 3119–3129 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. et al. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA. Nucleic Acids Res. 46, e24 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. J., McCabe, K. A. & Bell, C. E. Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proc. Natl Acad. Sci. USA 108, 11872–11877 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J., Pan, X. & Bell, C. E. Crystal structure of λ exonuclease in complex with DNA and Ca2+. Biochemistry 53, 7415–7425 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, D. et al. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Nat. Struct. Mol. Biol. 25, 347–354 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cromwell, C. R. et al. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. 9, 1448 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y.-M., Choi, K. H., Jang, Y.-J., Yu, J. & Jeong, S. Specific modulation of the anti-DNA autoantibody–nucleic acids interaction by the high affinity RNA aptamer. Biochem. Biophys. Res. Commun. 300, 516–523 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machinek, R. R., Ouldridge, T. E., Haley, N. E., Bath, J. & Turberfield, A. J. Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun. 5, 5324 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monis, P. T. & Giglio, S. Nucleic acid amplification-based techniques for pathogen detection and identification. Infect. Genet. Evol. 6, 2–12 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nouri, R. et al. CRISPR-based detection of SARS-CoV-2: a review from sample to result. Biosens. Bioelectron. 178, 113012 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thong, K. L., Lai, M., Teh, C. S. J. & Chua, K. H. Simultaneous detection of methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa by multiplex PCR. Trop. Biomed. 28, 21–31 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • De Oliveira, D. M. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, e00181-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Detection of SARS-CoV-2 and its mutated variants via CRISPR–Cas13-based transcription amplification. Anal. Chem. 93, 3393–3402 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Y. et al. CRISPR–Cas12a-based detection for the major SARS-CoV-2 variants of concern. Microbiol. Spectr. 9, e01017–e01021 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science 360, 439–444 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, C. B., Zhang, L., Farzan, M. & Choe, H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem. Biophys. Res. Commun. 538, 108–115 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, D. P. et al. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 184, 5189–5200 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. et al. Boolean logic gate based on DNA strand displacement for biosensing: current and emerging strategies. Nanoscale Horiz. 6, 298–310 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, T. et al. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase. Nat. Nanotechnol. 14, 1075–1081 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. The recent development of hybridization chain reaction strategies in biosensors. ACS Sens. 5, 2977–3000 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Base excision repair-inspired DNA motor powered by intracellular apurinic/apyrimidinic endonuclease. Nanoscale 11, 1343–1350 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Tricht, C., Voet, T., Lammertyn, J. & Spasic, D. Imaging the unimaginable: leveraging signal generation of CRISPR–Cas for sensitive genome imaging. Trends Biotechnol. 41, 769–784 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bi, S., Yue, S. Z. & Zhang, S. S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging and biomedicine. Chem. Soc. Rev. 46, 4281–4298 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Y. et al. Visualizing single-nucleotide variations in a nuclear genome using colocalization of dual-engineered CRISPR probes. Anal. Chem. 94, 11745–11752 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J., Im, H. & Lee, G. Unwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca2+, elucidated by biochemical and single-molecular studies. Biochem. Biophys. Res. Commun. 668, 35–41 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J., Fu, S., Zhang, C., Liu, H. & Su, X. DNA logic circuits for cancer theranostics. Small 18, e2108008 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, J. M., De Ornellas, S., Parisi, E., Schermelleh, L. & Buckle, V. J. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure. Nat. Protoc. 17, 1306–1331 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco, M. & Walter, N. G. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 472, 153–178 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Leave a Comment

    Your email address will not be published. Required fields are marked *